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Daring the course of this contract an extensive series of propmo

hae bew prepared for an IBM 7070 data processing machine. This

set of progrsm inoludes calculations of the following type,

1. Lens read in

2. Third and fifth order calculation

3. Automatic correction of third and fifth order oaloulatiua

4. Skew ray tracing modes

5. Radial energy distribution

6. Frequency response

7. Library routine

The ORDEALS Optics Programs

A met of programs have been prepared to carry out many of the

requirements for automatic lens design on an IBM 7070. This st of

programs iq called ORDEALS.

The ORDEALS programs are descriabed in the following writeup. which

have been prepared for general circulation. These notes were prepared

for a Rochester Sumer School where the programs were described and

demonstrated. The programs written up are:

1. Optics Programs for the IBM 70,70 Computer

This writeup is available in limited supply. It is also being

constantly improved and added to. (Included with this report as Appendix A)

I. A general Linearition Method for Automatic Lens Correction.

This paper has not yet been presented for publication because all

the latest features in this program have not been checked out. (Included

with this report as Appendix A)



2

III. Introduction to the Geometric Optical Frequency Response

This report describes the theory justifying the use of Geometrical

frequency response. (Included with this report as Appendix C)

Fture Work

This ORDEAL program is now being put into subroutines in Fortran

language suitable for a 7090. The new program will use automatic

correction based on ray deviations rather than using aberration theory.

By tracing 13 rays, it is possible to ealuate the optical system up

to the 7th order. After experience with this method has been evaluated

the decision will be made as to whether to add the third and fifth order

aberration theory. The latest method will optimize using geometrical

ray aberration. At a much later stage it will become necessary to in-

corporate wave front aberration correction.

Publications

During this period we have published the following paper in the

Journal of the Optical Society.

Creative Thinking and Computing Machines in Optical Design. Robert 3.

Hopkins and Gordon Spencer. J. Opt. Soc. Am. Vol. 52, No. 2, 172-176,

February 1962. This paper is included in this report.

The ORDEALS program writeup and tape units have been made available

to three optical companies.

1. Texas Instruments

2. F. M. A.

3. Pacific Optical Company
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The followiAng empanies have used the program at Focheter.

1. Pacific Optical Oo.

2. Bausch and Lomb

3. Tropel Inc.

4. Eastman Kodak

5. Itek Corporation

Per emie

This contract has supported the graduate work of Gordon Spencer.

He is now writing a PhD thesis on this problem of automatic correction.

The contract has also partially supported Mathew Riumer. Mr. Rsr

is now completing a Masters thesis on Fifth Order Aberration Theory.

Mrs. Alice Sinclair has been used to write programs. Her main

cotribution has been in preparing a Library routine. This feature allows

us to store for ready access all optical design solutions.
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Appendix A

0PTICS PORANS FOR !I3 I.B.M. 7070 OWINJT3

Mar 10, 1962.

A met of design mnd evaluation program.s called Ordeals have boom

- ~Witten for the I.B.M. 7070 machine. The following Write-up is a brief

description of the program input and output features. The program is

J ~being constantlyr worked on, so this description in subj)ect to atatus

There has been no attempt in this write-up to provide a Complete deeor3ticm

of the program, but it is available in autocoder language.

- - There are 238 pages of program. So far there are 75 page. of flow

charts.

The ordeals programs are written for an I.B.M. 7070 machine iihiab

contains the following basic units.

1) Three,, channel one, tape units

2) Three, channel two, tape units

3) A card reader unit

4~) A card punch unit

5) A 11401 printer unit

6) A 10K storage 7070.

The programs available are:

1) Automatic first, third and fifth order aberrations plum

seventh order spherical aberration,

2) A rar trace program,

3) Spot diagram,, radial energy distribution and pseudo

gm~trical frequency response.
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The program can accommodate oentered rotationally symmetrical surfaces

of the form

Z _ __ 2 + (G)S4 + (f)S6 + (g)S8 + (h)S1 0 , (1)

1 f1 - (K 1)C2S2

where S - Vx2 y2 .

Decentering and tilt plus non-rotationally symetrical surfaces are

being added to the program. A write-up of Spryte (Special Purpose RAU TRAC) is

included in Appendix #1.

The 7070 Ordeals program has been planned and written by Mr. Mathew

Rimer and Mr. William Hennessy. Mr. Riner wrote the aberration analysis,

and Mr. Hennessy planned and wrote most of the other features in the program.

Mr. Gordon Spencer has worked out the details of most of the computation

techniques, and formulated the automatic correction method used. (See

Appendix 2.) Dr. Robert Hopkins has mostly contributed by insisting that

the program be easy to use and require a minimum of input data.

A. The Ordeals Programs.

All of the 7070 Ordeals programs are located on tape 10. The major

programs are called into core storage for execution with call cards. The

call cards are simply cards with the name of the program punched on them.

There are three segments of programs. One set, called the I segment, remains

in core storage once it has been called in. The programs in segments one

and two have to share space in core storage. If one calls programs from

segment two, the programs from segment one which are in core are wiped out.

The programs with their call names and segments are listed belows

Segment I.

LENIN Lens read in.

LED Lens punch out.

LOAD Load constants.
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Segmet 1.

AXaN axial fan.

NV- ? Fall field traoe.

INDVR Individual ray.

am Spot diagram.

BRIFT Focus shift.

RD Radial energy distribution.

Segment 2.

FORD Fifth order

ODRD Fifth order correct.

AU70 Automatic correction.

Segent 1 contains programs used in connection with ray tracing. Sag-

mint 2 contains programs connected to aberration calculation and correction.

Sumt I contains program commn to ray tracing and aberration analysis.

3. BASIC FUATURES OF CALL AND DATA CARDS.

Iaut cards are always punched with alphabetic information in the first

field. Zither alphabetic or numeric information may be punched In the five

re aming fields. Fields are separated on the card by one or moee blnk

colunn. the first field may be punched anywhere on the card, but usually

it is started in the first column. A field may contain a mazim of tm

alphabetic characters or twenty numeric characters.

In not eases, numerical information is punched in floating point form,

lk te sig first, the exponent next and the number last. Per ex let

511000000 represents the number + 1.0 and

- 491000000 represents the number - 0.01.
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The floating point exponent refers to 50 " a base, and eqpneto may go

from 99 to 01. It is not neooossar7 to punch the Lnsignificant zero@ in a

number; hence the number -0.00400000 could be punched -4814 and the above

muewe as 5n and -1491.

If all the parameters on a card are zero, the alphabetic field in the

only one hiiih nust be punched. If the first parameter is ero, but the

second is not, then it is necessary to punch a single sem in order to keep

the proper order of the words. For example, an apherie constants card may

have four fields plus the alphabetic field. If the first, second and fourth

constants are zero and the third constant is -0.000026, it ma be punched

as follows

AS 0 0 -4626.

C. MAKE UP OF THE LENS DECK.

Since there are several options available for setting up a lons dock,

a geeral outline is presented here.

1. L IN. This call card calls the lens read-in program, reads

the lens data and executes a paraxial trace.

2. Comment cardsr Cards may be inserted to identify lens,

give date, etc.

3. Index selection card: This card defines the wave lengths

to be used in the third and fifth order aberration compu-

tations. Five wave lengths are specified: mid-wave length,

two for primary color aberrations and two for secondary

color aberrations.

4. First curvature card, defines the curvature of the object

surface.
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5. First thickness cards defines the axial separation between

the object surface and the first surface of the lens mystm.

6. Index of Refraction cards This card defines five indices

of refraction (usually, A, C, d, F, g) for the medium follow-

ing the surface. Any five wave lengths may be used, but

they are always referred to as A, C, D, F and 0 (in that

order) in the program.

7. urvature, thickness and index cards for the remaining

surfaces. Thickness and index cards refer to the space

following the surface.

8. A final curvature card for the final image surface.

9. The paraxial ray data card.

10. Call and data cards for other programs.

D. INPUT DATA

Details of Input and Call Cards.

1. LDIINt This is a call card for the lens read-in program.

LENIN may be punched in any position in the card. All the

letters must be together, however, with no spaces between

them.

2. Omment cardst Following the LENIN card, one may add as

many comment cards as desired. A comment card must start

with an asterisk in word field one. Comments in numeric or

alphabetic form may be punched according to the following

rulest

a. Words should not exceed ten digits.

b. Do not extend comuenta beyond column 59.
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a. There must be a space between the asterisk and the

first character.

A card with an asterisk may be used as a spacing card.

ftample, The ooments, "John Smith, Telescope Objective,

December 8, 1962", could be punched in the following four

cards, [*

SI .TZLXICOPE OBJECTIVZ

8 1962

3. Index of Refraction selection cards

Field one is punched with the alpha word NRSEL. Field two speci-

fies the wave lengths used in the calculations, the first letter

designating the major color. This wave length will be used for

the paraxial trace, third and fifth order aberrations. The next

two letters refer to the primary chromatic aberrations the last

two letters refer to the secondary chromatic aberrations. Any -

permutation of ACDFO with repetitions, making a total of five

letters, is permitted. Note that 'FC" and "FD" will give chromatic

aberrations with the usual sign zonventions, while "OCP and ODF

will give aberrations iirtii rreversed signs.

Examples To do third order and fifth order calculations in D

light, primary color between F and C and secondary color between

F aid D, punch the NRSEL card as follows,

NRSEL DCFD

4. Curvature Cards,

There are the following types of ourvature cards which mW be

r
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ued in the programt

Card Type Code for Field 1

a) Regular curvature CW

b) Regular curvature, stop surface 0M

a) Regular curvature, image surface CyI

d) Angle solve on the axial ray UA

e) Angle solve on the chief ray U0

f) Radius of curvature RD

g) Previous curvature pick up PC

h) Previous surface pick up PS

i) Previous radius pick up PR

The S may be added to the code for any curvature card in order

to make the surface the stop surface. For example, PC0, UAS are

allowed codes for curvature cards. An I may be added to any curva-

ture code in order to make the surface the image surface, e.g., PCI.

The first curvature card in a lens system is always the object

curvature card. Usually it has a curvature of saero, so it is

punched CV. The zero is not needed.

Previous curvature pick up: Often it is necessary or desirable

to make a curvature identical with, or have a constant differm

fron, a previous curvature. This is done with the code PC. In

field two the surface number of the surface to be picked up is

inserted in fixed point. The curvature my be picked up with a

reverse in sign by punching a minus sign in front of the surface

number. A constant difference (! C) may be added (or subtracted)

to the picked up curvature by inserting a floating point number

in field three. The conic constant K will always be picked up, and

its sign will not be changed.
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Examples Suppose that we want the 15th surface to pick up the

curvature on the 10th surface with a reverse in sign and a curvature I

difference of -0.01. Punch the 15th curvature card as followt

PC -10 -491. -

If the code PR is used, it picks up the previous radius and 4
it adds a AR.

If the code is PS, it picks up all the surface constants of "

the previous surface, including the constant K (see Equation 1),

and the aspheric constants if there are any. I
Conic sectionst Any floating point numbers inserted in the third

word field of a CV card are interpreted as the conic section

constant K. The following table relates the conic section K to j
the various types of conic sections availablet

Type of Conic Section Constant K

Paraboloid K - -1

Hyperboloid K Z- -1

Ellipsoid revolved about the major axis -1<K( 0

Ellipsoid revolved about the minor axis K > 0

The conic section K - -E2 where E is the eccentricity.

Examples A paraboloid could be described as CV -491 -5-. 1.

Aspaeric Surfacest General aspheric surfaces of the type given in

equation 1 may be inserted at any time by adding a card directly

after a curvature card; with ASPH in field one. Fields two, three,

four and five are reserved for the coefficients e, f, g and h.

(See equation 1.)
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I xiplet An aspheric surface with deformat4cn from a paraboloid

would than have two cards as followt

OV -491 -511

ASmI o 0 -4626 -4524

5. Thickness cards,

There are several types of thickness cards, as indicatod in

the following tablet

Card Type Code for Field 1

a) Regular thickness

b) YA solve. The computer computes the UA

required thickness to make the y of

the axial ray on the next surface

have the prescribed YA.

a) YC is the same for the chief ray. 10

d) Previous thilckess pick up. This LT

is exactly analogous to the previous

curvature code.

e) Clear aperture solve. CA

Clear aperture solver This feature provides for appropriate axial

separations between surfaces. There are two types of adjacent

surfaces. They are called closed if they edge contact when brought

together. If they contact at the center, they are called open.

If the code CA is used on the j surface, the progzu checks to

see what the ( + 1) surface is. Next it checks to see %hether

the material between the two surfaces is glass or air. Finall

it computes the thickness between the J and the (J + 1) sufaeee

acoording to the following schedule,
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Condition Air Glass
)(Open HI " a - b CA.

a nominally is 0.01 b nominally is 0.2

C) losed 71j -Z J -Z j +, 1 TH a Z -z, * " # -a

c nominally is 0.1

In no came is the glass thiocness made less than 0.2 CA. The second

field of the CA card contains the numerical value of the radius of

the clear aperture required.

For exomler A clear aperture radius of 1.2 would be punchedt

The sage Zj and Zj are computed with the following approd-

mate formula:

Z w C52  (1 2. 2(K + 1)) / (2 -C2 S2 (K + 1)1

One should remember that the edge thicknesses (c) of the lenses -

are determined by the fixed constant 0.1. This constant may be

altered at any time, as well as the constants a and b, by inserting

LOAD cards after the FORD card. See the section (0) on altering

program constants.

Ob*ot .,, tanoe In this program all object distances THo are

considered to be finite. To make an infinite object distance,

one merely needs to use a large number for THo. For example, it

is convenient to use a floating point number such as 601, or 60F,

,where F is the focal length of the system. This is useful because

then the object height Yo has the same value as the image height,

with merely a change of the exponent. For example, suppose a lens

has a focal length of 241" and it is to cover a half image field of

6". Then if TH0 is made 6024, Yo is 596. There is one danger with I

r
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this if the first surface is plano or slghtly cnoave towards the

object. Then il which is equal to yo u.1 ay beoe so small

that, when it is raised to the 7th powr, as is done In oalea.atg

the 7th order spherical aberration, it may underflow. If tug

happens, one may reduce IIo .

6. Index of Refraction Cards#

a) Refracting surfacer Punch INDEX in word field one and five

floating point indices in word fields two, three, four, five and

The five indices are referred to by the alphabetic letters

A, , D, F and O. One may insert any indices desired, but they

must be referred to with these letters.

Caution I i

1) Punch an index other than zero for all five fields even

though they may not be used.

2) The index card is a potential source of grave danger.

A mispunched number here can mean a false index of

refraction and go unnoticed until the final design is

made up. Be sure and check these indicesl It is advis-

able to compute V numbers directly from the numbers on

the card. It is also advisable to make up a set of

preVanched cards of the comonly-used glasses.

b) Reflecting surfacest If a surface in to be reflecting, simply

punch REFL in word field one in place of INDEX. No other numbers

are needed. The program automatically inserts negative index

values for all the following surfaces until another REFL card is

encountered. During this right-to-left travel, one mst insert
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thicknesses with negative values. This is one place mhere the

negative previous thickness is useful.

7. Paialn Dat Card -

A card with PXRAX in field one is used to provide the speci-

fication of the axial and the chief ray.

The items entered in fields two, three and four ares

j - the height of the object at the object surface. It

is usually chosen to be equal to the maximm value I
to be used by the lens. j

yl - the height of the axial ray at the first surface of

the system. It is usually chosen to be the maximum [
height acceptable by the lens for axial rays.

Yi " the height of the chief ray on the first surface.

If a surface in the system is labelled as the stop surface,

it is not necessary to insert a value of 71. The program will

assume a value of Yl and then trace the chief ray through to the

stop surface. If the 7 is not zero on the stop surface, the program

automatically changes 71 to make it zero. If no surface is labelled

stop surface and is left zero, then the first surface becomes

the stop surface.

8. FMD,

FORD is a call card which calls in the aberration correcting

program and initiates the computation. Upon completion, the progrem

automatically transfers to OORD.

9. CORDs.

This program initiates the automatic correcting part of the

program. The first thing it does is ask to read VARY cards, and

finally COR, ADD, HOLD AND HOLDT cards. These cards may be explained
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an follows

a) VARY cards.

VARr cards are punched with VARX in field ones, a fixed point

surface nuaber in field two, the curvature, conic constant k,

aspheric constants - or thickness to be varied in field three, and

a fixed point weight in field four. The weights vary from sero

to nine.

xamples To vary the curvature on the 6th surfae with a weight

of two, punch a card as followst

VARY 6 CV 2

It is possible to vary CV, CC*, TH, AD, AE, AF, AG, RD. If a VAR

CW card is used, the curvature on the surface will be varied with-

out regard to the curvature code used. For exale, if the urface

has a UA code and a VARY CV card is used, the UA will be varied.

b) CORR cards.

These cards specify the items for correction. OORR in punched

in field one. Field two is the aberration to be corrected. Field

three is the target value for the correction. The iteme ioAe nq

be corrected are listed in part f of this section.

Agamples If one wishes to correct the spherical aberration A5

to sero, the card can be punched

0ORt M5

o) ADD cards.

If a OORR card is changed to an ADD, then the aberration

signified in word field two is added to the previous O05 eam.

Never punch targt ivalues or weights on an AD card.

* 00 is the code for the conic section constant K.



bramplet One may correct SA3 + SA5 + SAT to zero by inerting I
the following three cards a

CORR SA3

ADD SA5

ADD SA7

One could correct a system to an over-all length of 10.0 by 1

inserting the following set of cards.

CORR TH 1 521I

ADD TH 2

ADD TH 3

etc. to I
ADD TH K-1

d) HOLDT card. I
If the CORR is replaced by HOLDT in word field one, the 3

program tries to minimize the difference between the target value

and present value. Field two contains the aberration, field I
three the target value and field four a fixed point weight which

varies from zero to nine. I
Examples If one wants to minimize the difference between SA3 I

SA5 + SAT and zero with a weight of 2, one can punch the folloing

three cards,

HOLDTSA3 0 2

ADD SA7

The HOLDT cards are used for aberrations which may not lend them-

selve@ for complete correction to a target value. One also may

use HODT cards to correct aberrations after all the variables

are used up. One may insert more HOLDT cards than variables.
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e) H)LD cards.

If HOLD Is replaced by HOLD I field one, it indicates that

the present value of the aberration diMoLd become the taet valae.

Otherwise the card is exactly the same as the HO? eard.

f) The following items a be corrected with OMI, N= 0 AM

or NOWD cardes

FOCAL The focal length of the mystam.

TACH Prlary axial color.

TCH Primary lateral color.

TACH2 Secondary axial color.

TCI2 Secondary lateral color.

SA3 - Third order spherical aberration. C

SA5 Fifth order spherical aberration.

SA? Seventh order spherical aberration.

0C3A3 Third order tangential coma.

OCKA5 Fifth order linear coma.

LCOUA Seventh order cubic coma.

TA33 Third order tangential astigmatic blur.

TA35 Fifth order tangential astigmatic blur.

DIST3 Third order distortion. Ak

DIST5 Fifth order distortion. tYk

TOBSA Tangential oblique spherical aberration.

SO A Sagittal oblique spherical aberration.

PTZ3 Third order Petsval blur.

PTZM5 Fifth order Pets blur.

8JA3 Third order Sagittal astigmatic blur.

8U85 Fifth order Bqjittal astigmatic blur.



If only thfrd'order aberrations are asked for, the pzop'm does

not compute all the fifth order aberrations during the mtinatic

eorr oting phase.

g) It is possible to oorret come item on individual surfaces.

In this case# the OOMR, HOLD., ADD$ or HOLDT are punwced wm folise

Field 1. CORR, AM, HOLD or HOLDT.

Field 2. CODE OF SURFACE IT .

Field 3. Surface number.

Field 4. Target value.

The codes for the individual surface items aret

PI Angle of incidence of axial ray.

PIC Angle of incidence of chief r.

PU Angle u of axial ray.

UC Angle U of chief ray.

TH Thickness.

CORD will transfer to read in correction data. After CORD, one

should have VARY, OORR, ADD, HOLD, or HOLDT cards. These cards are

followed by an AUTO card described in the next section. FORD auto-

matically transfers to CORD upon completion of the fifth order progrem.

Thus it is not necessary to follow a FORD oard with a CORD card. If

FORD is followed by a call card for another program instead of a VARY,

CORR, ADD, HOLDT or HOLD, the new program is called and control is

transferred to it. CORD may be used to correct a lens in steps. For

exumple, after FORD one might insert VAU cards, and CORR cards to

correct axial and lateral color and Petsval. These nust be followed

by an AUTO card. Then a CORD card will permit reading in monohro-

matic correction data 'and an AUTO card, which will begin oorreot:Lco

from the already color-corrected system.
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20. A2O calls in the automatic correction progrml und tramsfers to

Initiate the automatic corroction proedumre. It mut be used to

Initiate this feature.

The automatio correction method is briefly the followint

The a, t table will systematioally be varied one parameter

at a time. Depending on what the designer asks the madine to

oorroct, it vil compute third and fifth order aberratlous Wlk

this routine it is possible to compute finite diffeence rati,.

After all the required difference ratios are omputed, tki

are loaded into the equation solving routine.

The equation solving routine seeks to mininse a funetIn

subject to the simultaneous solution of the set of equation.,

N

In matrix notation this leads to the solution of the following

et of N + L equations with N + L uniknownst

A Ax +BTA = 7 iAr~A -- A d,
Bx +OX - e

with

A.(,O
4?4 ), A 'X kN (
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These equations are used in the design program to solve the sets

of non-linear equations encountered in lens design by assuming

linearity over a small region.

The elements of the x matrix become pj - 0pj" The difference

ratios are evaluated at op j . pj is the value of pj at a predicted

eolution. -

The elements of the d matrix become di, a set of distances

from target values for the set of functions to be minimised.

The elements of the e matrix become ei which are the distances

from target values for the functions to be corrected exactly.

The A matrix, is a set of Lagrange multipliers.

This method is the general form for McCarthyle, Rosents and

Wynne's method. j
A more detailed analysis of this procedure is described by

Gordon Spencer in a paper presented to the Optical Society of

America and included in Appendix 2.

. R Trace Modes.

There are four modes of ray tracing available. The first

three modes are called with the cards AXFAN, FUFTR, INDVR. The

fourth mode is SAM, a ray tracing for spot diagrams. This will

be described in Section 13. The first two call in programs which

use the paraxial ray data and automatically trace through a group

of rays. The last card calls for data specifying individual ray

data. A description of these modes is as follows:

a) Axial Fan: This mode of trace is called by a card with

the first field punched AXFAN. Immediately following this card,

one must have a card punched with RAPAT in field one and the wave

length code for up to three wave lengths in field two. f
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Nulese To trace axial fans in D light and C light, Ue the

following two cardea

AXFAN

RADAT DC

To do more then three wave length@, extra XPAM and RAT 6ang

are needed.

1he program traces three ray. in the first wave leqgh from

the a3ial object point (TO - 0) at the following valuea of I an

the eatanee pupil (Ten " 0).

Ray 1 en - 0.5 Yen

Ray 2 Xon a 0.75 Yen

Ray 3 Ion - 1.0 yen

It then repeats the trace for the other wave lengths on the RADT

card.

b) Full Field Traces This mode of ray trace is called with a card

punched with FUFTR in field one. It is limediately followd with

a RADAT card. This RADAT card in the sme an the oe ued after

AXFAN, but there are extra fields. In field three, a fixed point

number specifies the number of off-axis image points. The fixed

point number in field four specifies the number of meridional

rays to be traced on each side of the chief raq.

aumiles The following two cards are a cemon example of the

FUFMR

RAWDLT 2 3
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1hese cardo can the following sequence of ray t a ings

Rare 1-3 An axial fan in D light

4-6 An axial fan inFlight

" 6-9 An axial fan in C light

Bay 10 A chief ray in D light from an object

point at 2/3 70.

n U A chief ray in F light from an object

point at 2/3 Yo.

12 A chief ray in C light from an object j
point at 2/3 70.

I
Rays 13-18 Rays from an object at 2/3 'o but confined

to the meridional plane I - O. The rays

are evenly spaced above and below the

chief ray. The two rays farthest from

the chief ray pass through the top and

bottom of the entrance pupil.

a 19-21 Three skew rays from the object at 2/3 7o

which pass through the entrance pupil with

yen 0 0. The rays are evenly spaced from

the center of the pupil to the edge.

P 22-24 Chief rays in D, F and C light from an

object point at Y.-

" 25-30 Meridional rays like rays 13-18 from an

object point at 70.

31-33 Three skew rays like rays 19-21 from an

object point at y0.
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?he type of rap traced in this mods aft illustxated in ig. 1.

H-IQ67-

-0 0 01

BY punching PRINT in field five on RADAT card, one mq obtain

full surface print. (For description, see Section 3.) With no

PUNT one obtains partial print.
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c) INividual Ray Traces For individual rey trace, one mat have

the following arrangement of cards,

1) The first card is a transfer card with IN=TR punched in

field one.

2) The next card must be a fractional height card. FOBJH

is inserted in field one; next the fractional object height

in floating point is placed in field two. The rest of the

card may be blank, in which case a minim= of printing Will

be done (no print), and color D will be selected for the

chief ray. If a color other than D is desired (A C F 0)

one of these letters must be punched. If desired, PRINT

ma be punched first and then the color.

If the card read at this time is not a FOBJH card, the

card will be ignored and reading will continue until a FOBJH

card is read, or a transfer card to the next routine.

3) The next card must be ENPOO, an entrance pupil coordinate

card. X on the entrance pupil is punched in field two and

T on the entrance pupil is punched in field three. The rest

of this card may be blank or contain a color (A C D F G)

or the word PRINT or the word NOPRT. If the card is blank,

printing and color will be controlled by the tBJH card, or

if that was blank, no print and D will be used. The print

and color codes are originally set to no and D respectively.

These codes can be changed on either FOBJH or EMPOO cards

and remain changed until a new change is read in. he color

and print words can be entered in either order, or either

may be blank, i.e., not put in at all.

(
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12. Clear Apertures,

Provision is made in the program to stop rays which exceed

a certain clear aperture radius, This is done to cut down an the

mount of useless raytracing. The clear aperture radius ma be

arrived at in three different ways.

a) Automatic Assignment: If the designer makes no attempt to

assign a clear aperture radius to a surface, the clear apertu.re

is automatically computed from paraxial ray data. The clear

aperture is computed from the following formulas

CAj -I o + 0.2 +1 .2 10. 2

In the early stages of design, the clear apertures are assigned

In this manner.

b) By inserting a CA card in place of a TH card.

c) By inserting an OUTCA card. OUTCA cards are inserted just

before the thickness carrs.* To provide for an outside clear

aperture of 1.2, the card would be punched OUTCA 5112.

An OUTCA card should not be used on a surface with CA.

The OUTCA card is used when the designer wishes to alter the

clear apertures assigned automatically. There are cases where

the paraxial ray data used in the automatic method is not accurate

enough and rays are needlessly blocked. One example of this is

the use of a field flattener. The formula assigns a value close

to CA - 7 because y is very small. If there is any positive

distortion, all the actual rays may exceed this value of 3. For

this case it is advisable to insert an OUTCA card on the field

flattener surfaces in order to overrule the automatic assignment

of CA. OUTC4 cards are used extensively in the later stages of



-2-4-

a design when the energy distribution is computed.

d) The program also provides for a card called INCA. This card

blocks out all rays closer to the optical axis than a specified

inside clear aperture radius. If a surface has both an OUTCA -!
and INCA, they are inserted on two cards immtediately preceding

the thickness card. Their order does not matter. i
The INCA card does not block out chief rays, since thea

rays are used as references.

13. Spot Diagrams, I
SAM is the call card for the spot diagram program.

a) SAM should be followed immediately by a card with WAVTW in i
field one. The fields two to six in this card are reserved for

fixed point weights for the five wave lengths on the index of

refraction cards. The weights are used to specify the number

of rays to be traced. The weight times ten is the number of rays

traced. For example# a WAVEW card punched 1 0 3 0 1 would

trace 1O rays in A light, 30 rays in D light and 10 rays in 0

light. The spot diagram contains coordinates for all the wave

lengths.

b) Immediately following WAVEW is a card with FOBJH in field one.

Field two is reserved for the floating point fractional object

height. This card, therefore, indicates the object height for

the spot diagram. It is necessary to insert a FOBJH card for

each object height.

0) If a focus shift is needed, a card with SHIFT is inserted after

the FOBJH card. The second field on the SHIFT card should contain

the focus shift as a floating point number. 1
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d) The spot diagram coordinates may be listed by inserting a

card with SPLIT in field one. All the preceding spot diapwu

will then be listed.

The spot diagram program contains a subroutine that uses

the paraxial ray data and the clear apertures of the lenses and

computes the shape and area of the vignetted aperture on the

entrance pupil. The rays that are traced for each color are

evenly distributed over this area.

l4. Radial Energy Distributiont

A call card labelled RED calls in the program to compute

the radial or encircled energy distribution for all the preceding

fractional object heights. This program computes the per cent

radial energy distribution at five per cent intervals. The circles

are all assumed to be centered airound the chief ray in the major

color as specified on the NRSEL card. It is possible to shift the

center of the circles by inserting a card with CD in field one,

folloved by the floating point displacement in fields two and three

for X and Y center displacement respectively. CD stands for center

displacement. One may insert as many center displacement cards

as needed.

15. PqUENMC RESPONSE

This program computes a geometrical frequency response from

energy distribution data. The formula used is

T~v AE J.c)T (w) A oLc)r
EmAx

,iere E is the difference between two successive values of the

energy, E. r - (R)(RSC), where R is the arithmetic mean of the

two , values, and RSC - (sec @)i, where 0 is the obliquity angle,
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W - 21IN where N is the number of spatial cycles per unit length.

R and N must be such that wr is dimensionless. Division by LX

normalizes the response function.

There are two entries to the programs

1) FMET.

This call card will initialize computation of enery I

distributions for each spot diagram computed thus far am

the present lens which will appear in the output.

a) The obliquity factor and up to twenty values of N 3
are read in as follows

RSC +511 3
FRQ +511

FRQ +512 I
F53 3
FRQ 531

b) The output is two columns, one showing the frequency,

and the other the response at that frequency. U
2) FMEC.I

This card calls for energy distribution data to be

read from up to twenty cards with the code DIST in field I
one, the energy in field two and the radius in field threet

DIST 495 485 I
DIST 501 489J

DIST 511 492 f
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The program then transfers to read in the obliquity

factor and the frequencies, as in 1A.

16. Lens Read Outs

A call card marked LEO is used to provide an updated len

deck. It may be inserted any place in a deck, provided it doemn't

separate a cal card and its required data cards.

3. OUTPUT.

The output format for the 7070 programs are shown on pages 29-30.

The first column is the line list number. The second columm of three

numbers indicates the type of printing. The 500 line is the input data

obtained from the PXRAY card and the object distance THo.

The lines 501 to 506 are the lines printed for each surface in the

lens. The second column, which is a series of 01 values, is the surfaee

number. In this example only the first surface is shown. The aberra-

tions shown are the surface contributions.

The lines 507 to 510 are the total third and fifth order aberrations

for the system.

The line 511 shows the printing during each change cycle. Vo is

the initial value of a parameter. V1 is the new value. V1 - Vo is the

change in the parameter.

The lines 200 to 253 are the lines indicating the printing in ray

tracing. The last digit in the number indicates the wave length,

according to the following rule:

A-1

C -2

D 3

F -4

0 5
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Line 223 shows the full print on individual surfaces.

The first line of printing after RED has the 150 printing code.

The line of printing is shown on page 30. The items printed in

this line are,

1. The area of the vignetted aperture.

2. Ru is the radius of the aperture limiting the upper i
rays, as projected on the entrance pupil plane.

3. Cu is the center of this aperture as located in the

entrance pupil.

4. R1 is the radius of the aperture limiting the lower

rays, as projected on the entrance pupil plane.

5. C1 is the center of the lower aperture as located in 1

the entrance pupil.

6. Rn is the radius of the entrance pupil.

Following this 150 line, the per cent energy table is printed.

Above the table four numbers are printed, and labelled. They are#

1. FOBJH fractional object height.

2. Focus shift.

3. CDx  center displacement in x direction.

4. CD7  center displacement in y direction.

The per cent energy table is made up of two columns, the per cent energy

and the corresponding radius of spot.

Following the table, a single line of fixed point numbers gives

the number of rays traced in each color and the total number of rays.
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F. SAMPLE INPUT AND OUTPUT.

A sample Output from FORD is shown on pages 2 and 3 in Sample Design

number three. The program first prints out the input data from LENIN to

PXRAY.

On Page 4 the Input from FORD to the final CORR DIST3 is shown. The

remaining lines from 042 to 054 show the changes made in the first iteration

and the total aberrations for the first iteration.

Page 15 shows the input cards AUTO, LEO and FUFTR. The remainder of

page 15, pages 16, 17 and 18 show the ray tracing. The last machine printed

line is the RADAT card for the ray tracing.

The makeup of the lens can always be checked by the input printing.

The cards are all in sequence in the deck even though they appear to be

spread apart in the printing.

The output for the energy distribution calculation is shown on pages

30 and 31 of the triplet example. The printing on this sheet is self-

explanatory.

0. ALTERING FIXED CONSTANTS IN THE PROGRAM.

There are several constants that the designer may want to alter in the

program. This may be done easily by introducing a card marked LOAD in field

one. Field two should contain a four digit location number. Field three

is reserved for the constant. The constant must be inserted with all ten

digits.

The LOAD cards may be inserted directly after a FORD card. For example,

see Page 12 of Sample 3.
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The following constants are frequently changed:

Use of Constant Location value

1) Maximum allowable change in a variable. 7116 +5020000000

2) Maximum number of passes. 5758 +0000000006

3) Tolerance on aberrations. The tolerance is I
a per cent of the target value plus a fixed

increment. The per cent value is in 9589 +5010000000

The fixed increment is in 9588 +4710000000

4) The constants a, b, c used in clear aperture I
solve a 4278 4910000000

b 4280 5020000000

c 29 5010000000 I

H. OPERATION OF THE MACHINE. CARD ORm4TATICZ.

1. Set reader switch (1,2) to A, B.

2. Set punch switch (1,2) to B, B.

3. Mount Ordeals Tape on 10.

4. Mount Scratch Tapes on 11, 20, 22.

(20, 22 necessary only for SAM and RED.)

5. Initialize for Tape 10.

6. Press Start. End of File on Reader, Start on Punch.

7. Punch in time clock.

8. Press computer reset and start on typewriter console.

9. If typewriter types out CDERR

1) Remove cards from stacker.

2) Remove from hopper.

3) Run out cards in machine.

4) Add to cards in hopper and rerun by hitting start on typewriter.
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I1 0. In case of overflow or uncorrectable card errors

Depress Computer Reset and Start. This then bypasses the lens

I and goes on to the next lens. A comment RSTRT in printed out on

I print-out page.

1n. Upon completion of problem, the console typewriter prints out the

j message.

Print tape 11 off line.

1 12. Use PEST output program for 1401.

13. Put output tape on tape unit 2.

i. Console Switch A up, all others down.

15. Put &j x 11 paper in 1401.

I. GENERAL COMMENTS.

1. The third and fifth order programs take approximately second per

surface.

2. The ray trace takes 0.1 seconds per surface.

3. It takes approximately 10 seconds to do the matrix algebra required

in a 40 x 40 matrix.

4 The size of the matrix is equal to the sum of the number of VARY

cards plus the number of CORR cards.

5. The use of weights on the VARY cards is to change their relative

influence with respect to other variables. As one increases the

weight from 0 to 9 on a VARY card, it tends to decrease the change

in the variable. It has been found that for lenses with a focal

length around 10, it is not necessary to introduce weights (i.e.,

weights of zero) on the curvatures or thicknesses. In long focal

length lenses, it is usually advisable to put some weight on the

curvatures if it is desirable for them to influence the correction.
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6. Weights may also be assigned to the HOLDT cards. A large number for

the weight places a heavy emphasis on the minimization feature. If

the weight is too large, it may make it impossible for the target

values to be reached. On the other hand, if the weights are not high

enough, the minimization may have little effect.

7. The problem of introducing weights is very difficult and our present

program uses two methods for doing this. We are not satisfied with

either method, so we are not including them in this write-up. Appendix

three contains a discussion of the weighting problem, and describes

how it is now being done.

8. It is advisable to limit the number of iterations to six. Usually

something is amiss if this is not enough. In long systems it is good

economy to cut this to four. This gives the designer a chance to

see if everything appears satisfactory.

9. There is a mixed blessing written into the program. This is a maxi-

mum allowed change in variables. If any change exceeds this value,

it is scaled to the maximum allowed change and all other changes are

scaled by the same amount. This feature prevents many blow ups when

solutions are far away from the target, but it also slows down the

iteration. The value we have inserted in the program works well for

lenses with a focal length around 10. It is much easier to insert

this constant in hindsite than it is in advance.

10. There is a limit on the number of surfaces which may be used. The

present limit is 30, including the object and image.



A General inearization Method for Automatic Lens Correction

G. H. Spencer

Institute of Optics, Univorsity of Rochester, Rochester 20, New York

The use of programmed computing machinery for automatic lens
correction requires a definite prescription according to which a lens
system may be adjudged: (a) acceptable or not acceptable, or (b) improved
or not improved over a previous configuration. Judgments of the first
kind =ay be made on the basis of whether or not a given set of equations
are satisfied; judgments of the second kind, on the basis of whether or
not the value of a "merit. function" has been reduced. A typical lens
design problem will involve both absolute requirements, to which a judgment
of the first kind is appropriate, and relative requirements calling for
a judgment of the second kind. This paper describes a linearization method
designed to acccnnodate requirements of both tnpes. Several previously
described linearization procedures are shon to be included within the
fromework of the present method.
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I. Introduction

the developseat of high speed progrimmd oomputing machineor ha.,

during the past decade, prompted the investigation of various methods for

automatings or partially automating, the lens design process. The problem

is oomplioated, unfortunately, by the faot that the functions which measure

systsm perfomanoe are non-linear in the system variables. One approach to

the problem is to approxite the non-linear functions by linear ones and

solve the linear problem. 1he iterative application of such a procedure am

be empeoted to oonverge, under certain conditions, to the solution of the

nsn-linear problem. This approach is adopted in the present paper.

In the method to be described, Lagrange multipliers are introduced

am a means of achieving a sufficiently general framework to acooiodate both

absolute and relative system requirements. Absolute requirements are taken

here to mean those requirement. which must be met exactly in order that a

syste be considered acceptable. Relative requirements are those which may

be lumped together, with various weighting factors, into a single 5 merit

funetion uhose value is to be minimised. Experience indicates that it is

desirable, if 'not neoessary, to allow requirements of both types to be imposed

in the course of designing a lens system.

It should be mentioned that the use of Lagrange multipliers is not

new to automatic lens design. Pederl, and Meiron and Lobenstein2 have described

modified steepest descent methods in which Lagrange multipliers are used to

determine a direction of change for the system variables such that certain

properties of the system remain unchanged while the value of a merit function

is reduced. Steepest descent methods, however, possess serious deficiencies



2. i
ii

from a practical standpoint, the chief among these being extremely slow con-

vergence. 7here is some evidence to indicate that linearisation procedures,

when they converge, are likely to converge much faster than descent methods. 3 ' 4

Il. Statement of the Problem

One is given an optical system of J variables, pj (3 -

These variables may be surface curvatures, axial separations of eurfacesI

refractive indices, or aspheric deformation coefficients. In terms of these

variables, a number of functions, fk (PI"'"9pJ), may be defined which serve I
to measure various characteristics of the system, both with regard to its I
physical structure and its performance. The design problem is that of finding

a simultaneous solution, or something approaching a simultaneous solution, of

the set of equations

k(Pl, ...,Ypj) - s8 k - I°°K,().

where the sk are constants representing the desired values of the fk"

Aside from such basic system properties as focal length, magnifi-

cation, back focus, and total length, the choices which exist for the functions,

fk, are remarkably numerous. Among them one finds monochromatic and chromatic

aberration coefficients, simple ray deviations referred to either the chief

ray or Gaussian image points, mean spot diagram radii, weighted moments of

spot diagram distributions, mean square wavefront deformations, and energy

distribution and frequency response characteristics. Recent attempts to evolve

single "figures of merit" for images of extended objects have produced such

quantities as the relative structural content, fidelity defect, and correlation

quality5 . No attempt will be made here to assess the relative merits of these

various choices. It should be pointed out, however, that considerations of

physical significance (i.e., whether or not a meaningful indication is given -
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of the mWa In wich a given object field will be imaged) Must be suplemted

by ouideratiane of oputational, efficiency and linearity.

Now, fa'equently a simultaneous solution will not exist for the

entire set of equations. If K>J, for example, the existence of a siuteneous

solution is extremesly unlikely. In such oases, the adinmsation of

_E w2, 2 (2)
kul - 8's

} iwhere the w are weight factors, may be an acceptable alternative to an exact

solution. If a simultaneous solution does in fact exist,9 it idll correspond

Ito the absolute minizwm,4>- 0.

1 In general, there will be certain of the functions, fk' for wicih

it is essential than an exact solution be obtained, while for the wumaa~tning

I functions the miniimiation of fv'ill suffice. One thus divides the fk into
tuo groups

T 6(Pp...D*PJ) (M

and

Ihn(Pi,**ePPJ) (n a#00<~

Iand seeks to ninimise

4 2 *2 2 (g - on) 2(3
Mul

subject to the simultaneous solution of the not of N equations,

hn*t-PJ th (n - l,...N(0)" (4)

whuere the %~ are the required values of the functions, hn.
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'II. Lineerisation of the roblen

As previously indioated, the funotions, .g and hn, are generally

An-linear. Hostever, -in the neighborhood of a given point, (p,.**,pj), thew

may be represented by the onstant plum first order term Of their TWIayl.

Upaslons about that point. To this approximation, then,

g. - g: (c gW/pj)(pj-Pj,)  (5)

and Ju

hn - h (c~hr/apj)(pj - p5), (6)
Jul

*ere the derivatives are evaluated at the point (p

For notational convenience, the following definitions are now nades

!anf - bm

tn - en

p i - p; " qj (7)

Using the linear approximations (5) and (6) for gm and hn, Eqs. (3)

ohd (4) bome, in terms of the definitions (7),

&q-. (3a)

and

J

Sbnji 3 o n (n - /,Nj). (4sa)
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IV. the Method Of )blt-Um

The problem of finding an xtremu of a function subject to auxiliary

constraints can be most profitably attacked by the method of Lagrange milti-

pliers6 . Although in the present context its application will be restriote4

to the minisaton of a quadratic function subject to linear oonstraint., the

method is quite generally applcable.

Lot the equations of constraint for a system of J variables be

represented by

U On (n - l,...,N(J), (8)

where the en are constants. Ordinarily such a set of equations ill not

possess a unique solution. Rather, there will be a continuum of points

satisfying the equations. If (q1,...,qj) is one such solution, then

(q, * dq1#*'",qj + dqj) is also a solution provided the differentials,

(d4q.9 ... ,dqj), satisfy the relations

J

d .n - 2 (Qu Q3 )dqj - 0 (n - l,...,N<J). (9)

J-1

It is required that a solution point be chosen at -hich a given

function, 4t(q1,,..,qJ), remains stationary with respect to differential

variations cnsistent with Bqs. (9). At such a point, then,

d+- qjq - 0, (10)

whiere the differentials satisfy Eqs. (9).

At this junoture, the artifice of Lagrange multipliers may be intro-

duced. If Eqs. (9) are satisfied by a set of differentials (which was the

ondition under which the extremum of was defined above), then
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~?dn n~ 2:~ /Q~d~- (U.)
n-i n-il 1l

is also satisfied by that met of d fferentia s,, where theAn are arbitrary i
mLltipliers. Ihu Eq. (10) vill be unchanged by addition of the ma,.I.

Perfoming this addition, Eq. (10) becomes

"t q + n(-i -0. q) dqj 0. (12)

I
Now Eq. (12) will be satisfied if

( qk) + 1 nAn()Un/C9qk) -0 (k l 1,...J). (13)

Eqs. (8) and (13) together form a set of N + J equations in the

N+J unknovUsxn and qj, and are potentially solvable for these unknomns. I
The resultant let of values, qj, will then satisfy the extremm condition, I
Bq. (1O), in Odditiap to satisfying the equations of constraint. I

V. Application to the Present Problem

The present problem requires the minimization of the funotion,

given by Eq. (3a) subject to the constraints represented by Eqs. (4a). Thus i
we set

ai

from 'hichJ

P u - bn (15)



Appendix B 
7.

Also, from Nq. (3a),

2  ,q Wk4mijqj ,M 2, d J. (16)

Xqs. (13) thus boums

M J 2 N N
avj:elqj * -k2w. akda (k- 1,...,J), (17)

Sol~i nol awli

here ha been replaced by)n

Eq. (17) and (ha) form a set of N + J linear equation_ wioh

be Ilved by standard technisuew for the N + J unknown, qj and no

Before proceeding further, it should be verified that the extrin

of+ guaranteed by the solution of Eqs. (17) and (4a) is actually a uin-.

If * is expanded in a Taylor series about the extru po4At, the first older

term vanish by virtue of Eq. (10). Thus in the neighborhood of the eta'e,

Is given by the second order terms of the Taylor seriess

~ ~ ~ (a 2q-a ajc))Aq Aq~,(8
i-i ku

J-1 k-l X8

w heaf e denotes the extremm value. It is assumed that the variations,

Aq, arAda %, are consistent with Eqs. (4a).

Prm Eq. (16),
M

so that Eq. (18) becomes

P t - : Zu 3
2 . mk ~j Aq W M w%.mjLJ 2. (2.1i kal mi-1 U-1*Ju . (0



"wasi

":0M, (n)

*i&a *mn that4m is a -.nl.4.

If the equality in Ulq. (21) holds for any allowed variations, then

in said to be semi-d efinite and the mnim= is not uniquely defined. In this

case, 2W. (17) and (1aa) do not possess unique solution. The mbguity in the

solutiom mW be srimved, bmver, by adding to the m

3 (ocql)2 , (22)

m the a are % t factors. In addition to removing the mbAiguity in the

soluto , the inelsion of the wa, 3, affords a measure of control over the

influsne of tbe different variables on the solution. A large value for the

uelAt fatr ekp for" e1le, might be expected to yield a relatively aw L

solution vabU, .

If 3 Is to be included in E) qs. (17) must be modified by adding

the terl

* ~s 1 y - C~lk*(23)

BUs. (17) are thus replaced by

2 b - ,2a . (k * 1,...*J). (24)

m-l n-l Awl

TI. Hatrix Form of the Solution

the eui oof Eqs. (21 and (4a) may be greatly facilitated by

recastig the semsts In matri form. The necessary =tric@ are the followings
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th*,followings

Au (25)

.~ . . .ad/

I *1
(2~bJ bI, . UJ

o2

. .,(27 )

(22

=(3o)
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q w. (1)

and

* 0 

(32)

The matrix A and colmn matrix d will always appear maltiplied by

th. matrix of weight factor@ W. For convenience theme products are dftimed

tobe

M - W (33)

and

f w Wd. (34~)

Alo, in order to conserve space, a matrix 0 and a column matrix g are. defined

o - 0+ (35)

ad

g a Mtf, (36)

Wer the suerscript, t, dnote the transpose.

With seas dafinition., Eqs. (24) and (14a) bscme, rspecqtvely,

Oq + e (37)

Eq a eo (38)
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While the solution of Eqs. (37) and (38) may be obtained through the

Invetfoai of a single matrix having dimensions (NxJ)x( xJ), it is perhaps better

for reasons of computational accuracy to arrive at the solution by inverting

two maller matrioes. From Eq. (37),

q - -(g. st. (39)

Subtituting this result in A O. (38 gn solving fo

.-r( -c g _ e), (40)

where

E W-Bt. (41)

Ono* has been determined, it may be substituted in Eq. (39) to determine q.

The matrices, 0 and Z, which required inversion have dimensions JxJ and NxN,

respectively. Both of these matrices are symmetric and hence require fewer

operations for their inversion than do arbitrary matrices.

Sinoe the solution of Eqs. (37) and (38) is based on the linear

approximations expressed by Eqs. (5) and (6), it will not in general satisfy

Bqs. (4) and yield a true minimum off. However, if a solution does in fact

exist for Eqs. (4), then Eqs. (37) and (38) may be applied iteratively to arrive

at the required solution.

It is important that the changes in the variables produced at a given

iteration be kept within reasonable limits so that the linear approximations

retain some degree of validity. Otherwise, a system configuration may be

generated which is so far removed from the final solution that the chance of

convergence is reduced to the vanishing point. If the en have been reduced

to sero, the weight factors, cj, may be used to limit the changes produced at

a given iteration. If the en are not all zero, however, it is impossible to

confine the changes in all of the variables within arbitrary limits by use of
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the witht, o. o In such cases one mar take

pi a af+k (1 ... PR(42
There k is assigned a mall an eou value to paevent a" of the pj from szo g

specified Liits.

VII. Choice-o Weof ht Factors

The weight factors, wm and c j, play an important role in determining

both the nature of the solution obtained and the speed with which the method

converges to the solution. It has already been indicated that the factors c

control the effectiveness of the different variables. An a factor ok in made

larger, the corresponding variable, qk, is forced toward a mualler solution

value. This control shoud be of particular value in preventing variables from

straying far beyond physically realizable limits. The factors w. determine

the euphasis placed upon the corresponding terms of f. A large value for a

particular factor, wk, will lead to a solution for which the k-th tern off is

likely to be reduced to a greater extent than if a lesser value of wk were

used. The overall balance between the values of the factors wm and the factors

cJ determines whether the major emphasis is placed on the miniisation of the

quadratic approxination to or on keeping the changes in the system variables

relatively mall from iteration to iteration.

Even when all the weight factors are equal, however, there may be an

artificial weighting which arises from the fact that both variables and per-

formance functions may be a variety of types having widely differing ranges.

For example, a variation of 10 in the value of a high order aspheric defor-

matien coefficient might produce changes in a set of performance functions of

the same order of magnitude as those produced by a variation of 10 in the.value

of a lens element thickness. Thus, with equal weights, oj, for these two
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variableg, a solution would be obtained in which virtually all of the "lork"

m doe by the asmpheric coeffioient. Smilarly, if one term off had a larger

value mad larger derivatives than my of the other term, the geatest ebami

would be plaoed an the reduoton of that tem.

..* I It In of primary importance that the effect. of artificial weighting

of the variables be counteracted. Because of the large differences aong the

variables whiah my be encountered in practice, it is possible for certain

variables to be rendered almost totally ineffective by artificial weighting.

If ulguifloant ohmages in these variables are necessary to the final solution,

the method may fail to converge or, at best, will converge slowly.

A possible way in which to counteract the artificial we1hting of

the variables in to require that

(C) 2S/aq 2) - (a 2 y1/q 2 ), (43)

"Y (M a.)2 +l(hn - tn)2 .  (44)

Mi yields

2 m 2 N 2)Ci EZ Smj Z bnj (5
Mo nal

In order to retain the ability to control the weighting of variables, oj May

be replaced by

rn-i n-

Nqual values for the new weght factors, Tj, wil have the effect of main

all of the variables about equally effective.



A numerioal problem remains in that the elements of the matrioes A

and B may exhibit an extrenely wide range of values so that round-off errors 

beome troublesome. This problem may be alleviated by transfoulzz to & new

set of variables defined by I
ii -(jqj (i) I

O~au~arn2 N 2 1i~/2 (Sc j M aJ +,.I•(s

Eqs. (37) and (38) then beoome I
z + (49)

and

V (50)

and ED.1. (52) i
The matr-oes "s( and are the diagonal matrioes, I

0 t

'MA

j10
C 0
\ 0 (%,,)
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It is evident from the above that the effst of artificial weistUng

of the variablee disapears with proper sealing of the varlableso

VIn. Particular Cases of Interest

Several previously described methods of automatic lens correction

appear within the framework of the present formulation. It should be instru-

tive, thereforg, to review them.

The Method of Least Squares used by Rosen and Eldert 7 , and by Niwron8

deals with the iniisation of fin the absence of constraints. -Thus B Cs and

e became nu3 matrices and Eq. (39) reduces' to

q - G-Ig - (Mt)'Ittf. (5 )

This method has been used with some success to reduce the magnitude

of spot diagram ray deviations and to minimize third order aberrations. It is

necessary that the number of variables be lese than or equal to the nmbe of

tes of 4. Otherwise the solution will be indeterminate. In some cases

excessively large values of the qj may be produced. The changes applied to

the variables mut then be limited in the manner indicated by Eq. (I2).

Feder 9 has pointed out that while the method may converge relatively

quickly to the vicinity of a minimum, the accuracy of the method in that

vionity may be so impaired by nonlinearity as to prevent further development.

Hopkins and cCarthy 10 ' 11 have described a procedure designed to

yield esplicit values for a set of system functions when the number of available

variables exceeds or equals the number of functions. (In their application,

the system functions were the third order monochromatic and first order chromatic

barrations.) The procedure follows from the present formulation by eliminating

f and setting cj - 1 for all J. Thus A and d become null matrices, 0 becomes

the identity matrix, and Eq. (40) reduces to
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* (56)

---I

Eq. (39) then yields

q -t). Bt(BBt)-le. (57)

This method has been used for several years at the Institute of Optics

and has proved to be a powerful aid in practical design1 2 . , The condition that

the sum of the squares of the qj be minimized tends to confine successive changes j
in the system configuration within i'easonable limits when the elements of e are

not excessively large nor the elements of B excessively small. In oases for I
which large changes have been generated, recourse to the limiting procedure

represented by Eq. (42) has usually proved successful in preventing the process

from diverging. I
Recently, Wynne 13 , 14 has described a method of "Successive Linear

Approximation at Maximum Steps", which is an extension of the Method of Least J
Squares. Here one includes the sum S but sets all of the weight factors, c3 ,

equal. Thus

C - cl, (58)

where I is the identity matrix. Eq. (39) then becomes

q - (MtM + cI)-lMtf. (59)

This method provides control over the magnitude of the q, at each "

iteration through the choice of a value for c. As c is increased, the magnitude

of q (considered as a J dimensional vector) is decreased and the direction of

q is shifted toward the direction of the negative gradient of lat the point

q - 0, i.e., toward the direction of maximum decrease in §. The ability to

restrict the qj to a region of approximate validity of Eqs. (6), coupled with

the removal of any indeterminacy in the solution, assures convergence. It is

necessary to choose c carefully if the full potential of the method is to be

I
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realised, however. Too large a value will overly restrict the changes in the

variables so that the sped of convergence will be unnecessarily rednoed. Too

mall a value mn result in less than optimum opuergenoe beomae of nom-lari .

HX., Conclusions

It is not anticipated that the method described here will be a panacea

for all problems of lens design. It is expected, however, that the method will

provide the lens designer with a particularly flexible means of exploiting the

advantage of high speed automatic calculation offered by moder computing machinery.

Bw power of the method vill depend largely on the skil which the designer diLs-

pla. In controlling its use.

7he choice of system evaluation, functions should depend not only on

the particular requirements of a given design problem but also on the stage of

development of the design. At the outset it may be most expedient to work with

simple evaluation fanctions, e.g., the third and fifth order aberrations, leaving

the use of more definitive but computationally more complex evaluation function

to a later stage. If reasonable values cannot be obtained for the simple function

it will be necessary to make a major alteration in the system, either by addin

aspherics or additional elments, or by selecting an entirely different initial

configuration. In such circnmstances the add'tional time required to oompute

values for more elaborate functions from the outset would be wasted.

It has been mentioned that the choice of weight factors for the terms

off dterminea the nature of the solution obtained. As a design progresses,

the judgment of the designer in modifying the weight factors, so that emphasis

is shifted from one characteristic of the system performance to another# will

be inflntial in determining the quality of the final design.
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INTROIJOTION TO THIE GEOKITAC OMTCAL MMYRS

L Trenultion from the Wave Optical to the eometraic Optim JRfto
Tie wave optical intensity response in given by

(Nl,. -NY) C ' A (.,!) A" (X- XI , Y.My) dd !, (1)

-q1 --

whaere

A(XY) - A(X,Y)I e - Ox) (2)

aid

X IA(XY)I . (3)

Srepresents the wavelength of light In the image space R, the radius of

the Gaussian reference spherel (Nx, Ny) , the spatial frequency coemponents

(XY), the coordinates of a general point on the reference sphere, referred

to coordinate axes in the exit pupil plane.

A(X,!) in called the complex aperture transmission function, or

simply the aperture function. It specifie the amplitude and phase variation,

over the reference sphere, of the light originating at a mnochrmatio object

source point. IA(XI,)I is usually assumed to have a constant value of unity

within the physical limits defined by the exit pupil and zero value outside

these limits. (This assumption is, of course, invalid for systems having

qioiusing apertures.)

0 (X,) is called the wave aberration. It is defined with respect

to a constant phase wavefront in the neighborhood of the exit pupil. To be

definite, we may take the wavyefront which passes through the origin, (oo),

-1-
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at the dadt pupilo 0(9x,) is the distance from a poin on the wvefrant to

Use point (XI,) an the.reforena sphere, measured along the normal to the

wefftnt (i.e., along the ray wich intersects the reference sphre at (x,!)).

Our purpose in this section is to deduce the form of the response

ftnction In the sot wvelength limit, X -00. Thi Is the geometric optioal

qpMroUmation.

For couvenience, we first write

A(xOY) O+(x- XINsx, 'r- ANy) - 'e 44)

ero, from (2),

old IrA(X,Y) I A(X-XM., !-AM)I• (5)

.2 r -VL (X,'r) - IARN, T- A My)j (6)

We see Imediately that

lim r aI.A(XsY)I S (7)

X-+ 0

so ow. Attention -is directed to the function ~

The most obvious method of attack is to eWand V' as a powe series

in A~ about Aro. To do this we consider C( ) whiere

- I

The T17lor sansion of 0in the variable is

go j.

0I
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Nw 1/1 m be thought of as an operator which is applied w tme In

the nth tam of the seriee. We know that

R - (N" ' l/

so that the operator / is

(10)

Heance we may write the series (9), as

<'41Ti. Ool

0 (N()(NN i N -,)+14

In the preceding equation, we have made use of the fact that (K , Q) - (X,Y)

when ) - o so that

%'.r ed is any function of and
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Substituting (11) in (6):

X-4 • (13)

It is amuned that none of the derivatives become infinite. There are

unusual casel in hioh this assumption Is violated (**go, when a wave normal

is tangent to the reference sphere), but the result (13) remains generally

valid.

We are now able to write the geometric optical response using

the results (13) end (7)t

,. eLWRJQ,4 +W

If we take IAX*~ , fl (X,!) within pupil area)
PA ,, - O,( XO) outside pupil area

then the normalising factor, K, is simply the area, a, of the pupil, and

the infinite Units in (14) may be replaced by the limits defined by the

pupil. Thus

-D ~ ~ 4.~ ~)@ix~v .(15)
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II° Representation in Terms of Image Plane It Coordinates

Our purpose in this section is to relate the wave aberration, ,

to the image plane coordinates of the rays associated with the given wave-

front. The result will be used in Eq. (15) to obtain an expression for

the geometric optical response which depends only upon the image plane ray

coordinates. The advantage of this representation comes from the fact that

it is an easier task to calculate accurate ray coordinates than to calculate

wave aberrations.

Fig. 1 shows the exit pupil plane, (X,Y), the Gaussian reference

sphere, S, the given wavefront, W, and the image plane, (kkYk). The Gassian

reference sphere is assumed to pass through the origin at the wdt pupil

and to have its center of curvature at the Gaussian image point, (Iksyk)P

in the image plane The image plane is assumed to ba separated from the

exit pupil by a distance D.

Now the distance from a point (XY,Z) on the wavefront to the

Gaussian image point is

, t [ - ) (Y- y) 2 +, (Z- D)2 (16)

If we define t to be the distance from the point (X,Y,Z) on the wavefront

to the reference sphere, measured along the normal to the reference sphere,

we may write

R, a R + b (17)

Ahere R is the radius of the reference sphere and is given by

R - [ l2 D ] , (18)

Pr= (16)-(i8), we find

21 & A2 -x 2 + y z2_ 2(xlffkxY k + zD). (19)
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REFERRENCE

FIGURE I. WAVEFROPJT ASSOCIATED WITH POINT OBJECT, AS IT

MIGHT APPEAR AT THE EXIT PUPL.
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Now t4pical,

- 5'5, (20)

so to a very good approximation we may drop the A2 term in (19). The

result may be taken as the equation of the wavefront and it will be eon-

venient to writ* It In the foe

F(X,!,Z) - X k + k + ZD- j (X2 + 2+ Z2) + R&- 0. (21)

Letting (Xkrk) represent the image plane ooordinates of a ray

from (XYZ) on the wavefront, the symmetric equations for the ray are

Xk- X D- Z
4 bF (22)

Daluating the derivatives, we find

Xk- X Yk- Y

(3
k- R - Y + (2.)

(& is a function of X and Y only; once it is given, the Z coordinate on

the vavefront is determined by (21)). From (23) we immediately obtain the

relatiom

Xk Xk-X'ku

YZk Yk" - k - ' (24)

To a good approximation we may replace & by 00 the wave aberration

introduced in seotion Is The order of magnitude relation asseiated with
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this approximation is
# ,- A' (25)

Thus X

Xk R _VX (26)

These relations may be substituted in (15) to obtain the

requiwed expression for the response: -

V~~ T"k +'f W rY

(27)

One of the most direct ways of evaluating the above integral

in to sum up spot diagram data. One traces a large number of rays through

the optical system, arranging them such that they are uniformly distributed

over the entrance pupil (and hence nearly uniformly distributed over the

exit pupil). The response integral (27) is then replaced by the summation

formula

T

+ -;-o , 7 -r N , r X . ) + N , ( rY k 1i
1 , U (28)

where the subscript j identifies the jth ray, and T represents the total

number of rays.
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III. Averaged Circular Respse

Suppose we are ooncerned ith Imaging a sinusoldal target having

spatial frequec, N B oriented at an angle B with respect to the X axis in

the objeet plane (see Fig. 2). The spatial frequency empAsents thean are

Nx : N sine 
(NY N oo N)

If we taensfon the ray deviations (xk, JYk) to polar form,

e Yt pup il

ve may write (2?) as follows s

I, (N ) , S j (

exit pupil

exit pupil

?be average of (31) over all target orientation@, 0, constitutes

a useful criterion of system performance. We shall denote this average

by f(M) and call it the averaged circular response. Using (31),

( LFr.) ' e jY JWJY

*+r

A Vkrrl 32
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NovCO c.(x ;"V (3 m3)

.hem Jo(s) is the seo order Bessel function. Our response is thus

'
) ) (34)

exit pupil

If spot diagram data is available, we may use the suation

fozmla

hers ? is the number of rays and (rtk) is the distance from the Oaussian

Image point to the point of intersection of the jth ray with the image plane.

It is common practice to present spot diagram data in the form

of radial energy distribution curves. If we were to center a sufficiently

mall circular aperture at the Oaussian image point, a certain number of

rays would fall outside and be blocked. If the radius of the aperture were

allowed to increase, we would find more and more rays passing through until -*

eventually all of the raps were admitted. The radial energy distribution

curve is a plot of the fraction of the total number of rays passing through

such an aperture as a function of the aperture radius. lach ray repesents

the light energy pasi" through an elemental area of the aperture so that L1

a fraction of the total number of rays may be interpreted as a fraetion of r

the total light eerg passing threugh the optical system.
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frtm a radial energy distribution curve we may select a set of

points such as the following,

0e )

ILI

I I

EV 1" )
I

I

%here 4 Is the nmber of rays pausing through an aperture of radius

(lk)L emtered at the Gaussian image point, and ? is the total number

of rys In the spot diagrm. ?he points are chosen such that o. A'%.

(see ia. 3).

It the points are not too widely separated, we may say to a fair

plpo34matn that the spot diagrm consists of

A I ry points having radius IV

+

A L

I I

I I
I I
I I
I I
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FIGURE 2

SINUSOIDAL TARGET IN THE OBJECT PLANE.
PR ONCY COMPONENTS N in .I ,,.N CO

RELATIVE
ENERGY

Ems I

; -

(s0) (Fp4t,(&p4 (8........ (8)00

FIGURE 3 -

TYPICAL RADIAL ENERGY DISTRIBUTION CURVE SHOWING VALUES
USED FOR APPROXIMATE AVERAGED CIRCULAR RESPONSE CALCULATIONS.

T
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Th'5D (35) WW be written

#- &~*( wN~f\),(36)

dawr
OKm - " (37)

X '(38)

HotlN that

-- . - . (39)

we e ot (36),

kA iee 41

ie fomula (ho) requires much less computing time than does (35). Typioally.,

a value of 20 for N is sufficient to give acceptable accuracy for design

work,

IV. Series Expansion of the Averaged Circular Response --

Moments of the Spot Diagram Distribution

A typical term of the series (35) may be expended to yield

' £ O""JL,.rk., (42)
*'~)L
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Ihe

16(m r . (13)

and

• I'(Id)

The eta may be recognised as the even moments of the radial spot

diagram distribution. Recent applications of automatic coamputing techniques

to the deign of optical systems have been baaed on eAI, as a measure of

system performanae. We see that i( 1 determines the response in the low

,frequency region, and that minimisation of 0(1 for a given image will max-

mise the low frequency response. his gain, however, may be at the sacrifloe

of good bigj frequency responee. The following exmple illustrates tbie

point.

oplpose we have an image aharacterined b the equation

T(,, ", C. d - .V (1.6)

lkzee is the radial exit pupil coordinates

- (x2 + y2 ) .2 (I)--9

-I

-I
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The ftret term of (46) represents defeat of focus, while the seond tear

represents undercorreoted seventh order spherical aberration. We shall

take the coefficient, a, of the first term of (46) as a variable which

ailove ua to alter the image distribution. Variation of a corresponds to

a movement of the image plans along the Z axis.

Fig. (4) shoew the response , (N) for several values of c

aemming an aperture defined by

~ 1. (48)

The curve labelled A is obtained when c = a. The response is seen to drop

fairly rapidly in the low frequency region to a value of about 0.6 and then

to level out, extending well into the higher frequency region without

dropping below 0.4. Fine detail in the object Vill thus be preseed In

the Images although at reduced contrast.

The curve labelled B is obtained when c - .04. This is the value

of o for *ih A 1 is nminnun. The response in the low frequency region

has bow considerably improved. In tho higher frequency region, however,

the ruponoe now drops quite rapidly to sero and becomes slightly negative,

intde ng "spurious resolution".

The curve labelled C corresponds to an intermediate image plane

position, a - .022. The improvement over curve A extends well into the

mld frequency region. Curve C is a decided improvement over curve B, the

sl4ght reduction in low frequency response being more than compensated for

by the large elevation in the higher frequency response. (In speoial appli-

cations, of oourse, curve B may be preferred for specific reasons determined

by the application.)
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Onve C oozesponds to the minim of the function

I-

z~~ (rj; /((49

*labo .om am promse of being a mae suitable Imerit function" then

oter gomw, ppeee design.
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